# Time Is Not a Healer, but It Sure Makes Hindsight 20:20

Giuliano Losa, Stellar Development Foundation Eli Gafni, UCLA

#### We present a new, simple proof of the FLP impossibility theorem

The proof in a nutshell

- Using a simulation, we reduce the problem to the synchronous model with message-omission failures of Santoro and Widmayer
- Each round of the synchronous model, we identify a process that can impose a decision but fails to do so (not FLP bi-valency)

Why might you care?

- 1. Neat proof
- 2. Pedagogically interesting for its combination of a reduction argument and a simple indistinguishability argument
- The proof is constructive: each round, it is easy to compute which messages to drop to prevent a decision

Additional contribution: we also show that the FLP model and the model of Santoro and Widmayer are equivalent (they simulate each other)

## FLP '82: consensus is impossible in an asynchronous message-passing system in which one process may crash

- Process can do arbitrary deterministic, local computation
- Messages are never lost but their delay is unpredictable
- At most one process may crash



## FLP '82: consensus is impossible in an asynchronous message-passing system in which one process may crash

In the (binary) consensus problem, every process gets a binary input and:

Liveness:

Every process must eventually produce a binary output

Agreement:

No two processes must produce different outputs

Validity:

If all processes start with the same input b, then no process outputs  $\overline{b} \neq b$ 

Santoro and Widmayer '89: consensus is impossible in a synchronous message-passing system in which, each round, one process may suffer send-omission failures

The fail-to-send model

Processes never crash!

We have synchronous, communication-closed rounds

No interleaving of messages

Each round, an adversary picks a process and drops some of its messages



#### FLP model

Asynchronous communication

Only one, irrevocable process failure

#### fail-to-send model

Synchronous, round-by-round communication

Message-omission failures that can affect any one process per round





## Both original impossibility proofs are quite similar... Can we prove one by reduction to the other?

### FLP model

Asynchrony

Only one, irrevocable process failure



#### fail-to-send model

Synchrony

Message-omission failures that can affect any one process per round





## The proof, step 1: Simulation of the FLP model in the fail-to-send model



Simulation

=

Implementation of the communication system

## To simulate the FLP model in the fail-to-send model, we just keep re-sending messages to obtain eventual delivery

Each round, each process re-broadcasts every message it ever sent or received (piggybacking on new messages)

If a process fails to send any message forever, then we can consider it crashed



## The proof, step 2: Impossibility of consensus in the fail-to-send model

## Like FLP, Santoro and Widmayer proved consensus impossible in the fail-to-send model using the notion of *bivalent configuration*

Assuming a consensus algorithm, both FLP and Santoro and Widmayer build an infinite bi-valent run; contradiction!



## Key insight: build an infinite run of p-dependent configurations

A configuration c is *p*-dependent when:

- The p-silent run from c decides b
- The failure-free run from c decides  $\overline{b} \neq b$

Lemma: a p-silent configuration is undecided



## We build an infinite run of p-dependent configurations

Given a pseudo-consensus algorithm (with weaker liveness)

- 1. There is an initial p-dependent configuration
- 2. Given a p-dependent configuration, a p'-dependent configuration is reachable in one round.



 $c_i$  and  $c_{i+1}$  are adjacent: only one process has a different state















21

 $c_3$  is  $p_2$ -dependent

### p-dependent leads to p'-dependent in one round

Take  $c_3$  as in the previous slide, where  $c_3$  is  $p_2$ -dependent:



#### p-dependent leads to p'-dependent in one round



### p-dependent leads to p'-dependent in one round



p-dependent leads to p'-dependent in one round Case 1: failure-free decision from  $c_1$ ' is 1  $c'_1$  is  $p_2$ -dependent



p-dependent leads to p'-dependent in one round Case 2: failure-free decision from  $c_1$ ' is 0



same situation as in the initial round

## QED

Key ingredients:

- Reduction to impossibility in the synchronous, fail-to-send model
- Proof in the fail-to-send model using p-dependent configurations



bivalent

## We show equivalence by simulating each model in the other

FLP model

Asynchrony

Only one, irrevocable process failure



fail-to-send model (Santoro and Widmayer)

Synchrony

Temporary communication failures that can affect any one process each round





## We can also simulate the SW model in the FLP model

This is more surprising: how do we simulate synchrony in an asynchronous model?



## Finally: why the title?

*Impossibility of Distributed Consensus with One Faulty Process.* Fischer, Lynch, and Paterson 1982 (Consensus is impossible in the FLP model)

*Time Is Not a Healer*. Santoro and Widmayer 1989 (Consensus is impossible in the fail-to-send model)

In hindsight, we see clearly that those two results are equivalent, thus:

*Time Is Not a Healer, but It Sure Makes Hindsight 20:20* 

(In the USA, vision is measured on a scale from 0 to 20)